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5.1.1 Lois phénoménologiques

Lois phénoménologiques : la température T , le volume V , la pression p
et le nombre de moles N de substance d’un gaz suffisamment dilué sont
liées par quatre lois phénoménologiques :

1 Loi de Boyle-Mariotte : à T = cste et N = cste

(isotherme) (5.59)

2 Loi de Charles : à p = cste et N = cste

(isobare) (5.60)

3 Loi de Gay-Lussac : à V = cste et N = cste

(isochore) (5.61)

4 Loi d’Avogadro : à p = cste et T = cste

(isotherme et isobare) (5.62)

Loi phénoménologique :

(5.63)
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5.1.1 Expérience - Loi de Boyle-Mariotte

p

V

Un gaz dilué est enfermé dans un cylindre vertical par un piston. Un
transfert de chaleur assure l’équilibre thermique à température T
constante entre le gaz et l’environnement qui joue le rôle de réservoir de
chaleur.

Différentes masses sont posées sur le piston. On mesure la pression p et
le volume V du gaz, et on vérifie qu’ils satisfont la loi de Boyle-Mariotte.

(isotherme) (5.59)
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5.1.1 Expérience - Loi de Charles

Un gaz dilué est enfermé dans un cylindre vertical en aluminium par un
piston mobile qui garantit une pression p constante.

On place le récipient métallique dans de l’eau chaude et de l’eau froide et
on mesure le volume V et la température T et on vérifie qu’ils satisfont
la loi de Charles.

(isobare) (5.60)
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5.1.1 Expérience - Loi de Gay-Lussac

Un gaz dilué est enfermé dans un cylindre vertical en aluminium par un
piston fixe qui garantit un volume V constant.

On place le récipient métallique dans de l’eau chaude et de l’eau froide et
on mesure la pression p et la température T et on vérifie qu’elles satisfont
la loi de Gay-Lussac.

(isochore) (5.61)
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5.1.1 Expérience - Loi d’Avogadro

Un gaz dilué est introduit dans un récipient fermé par un piston. La
pression p et la température T du gaz sont maintenues constantes à
l’équilibre thermique et mécanique avec l’environnement (réservoir).

On modifie le nombre de mole de gaz dans le récipient en introduisant du
gaz. On mesure le volume V et le nombre de moles N de gaz, et on
vérifie qu’ils satisfont la loi d’Avogadro.

(isotherme et isobare) (5.62)
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5.2.1 Transfert réversible de chaleur

Coefficients calorimétriques : ces coefficients phénoménologiques
caractérisent la réponse du système à un transfert réversible de chaleur.

Système simple :

1 Fermé : IC = 0

2 Diatherme : IQ 6= 0

3 Déformable : PW 6= 0

4 Composition : N moles d’une seule substance chimique

Variables d’état :

1 Température et volume : (T, V )

2 Température et pression : (T, p)

Potentiels thermodynamiques : l’entropie S peut être exprimée comme
fonction des variables d’état : S (T, V ) ou S (T, p). Alors, l’énergie
interne et l’enthalpie deviennent des compositions de fonctions d’état :

1 Energie interne :

2 Enthalpie :
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5.2.2 Coefficients calorimétriques dépendant de T et V

Premier principe : variables d’état (T, V )

(5.1)

Déformation : (2.59)

PW = − p (T, V ) V̇ (5.2)

Courant de chaleur : (5.2) dans (5.1)

(5.3)

Relation de Maxwell : théorème de Schwarz appliqué à F (T, V )

∂p (T, V )

∂T
=
∂S (T, V )

∂V
(4.87)

Courant de chaleur : (4.87) dans (5.3)

(5.4)
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5.2.2 Coefficients calorimétriques dépendant de T et V

Courant de chaleur :

IQ = T

(
∂S (T, V )

∂T
Ṫ +

∂p (T, V )

∂T
V̇

)
(5.4)

Identité cyclique : fonctions p (T, V ), T (V, p) et V (T, p)

(5.5)

Dérivée partielle : (5.5)

(5.6)

Dérivée partielle : (4.96) dans (5.6)

(5.7)

Courant de chaleur : (5.7) dans (5.4)

(5.8)
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5.2.2 Coefficients calorimétriques dépendant de T et V

Capacité thermique isochore : à V = cste [J ·K−1]

(5.10)

La grandeur CV ∆T où ∆T = 1 K est la chaleur Q fournie pour
augmenter la température T de 1 K à volume V constant.

Coefficient de dilatation isobare : à p = cste [K−1]

(5.11)

Ce coefficient représente l’augmentation relative du volume V due à
l’augmentation de la température T à pression p constante.

Coefficient de compressibilité isotherme : à T = cste [Pa−1]

(5.12)

Ce coefficient représente la diminution relative du volume V due à
l’augmentation de la pression p à température T constante.
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5.2.2 Coefficients calorimétriques dépendant de T et V

Courant de chaleur :

IQ = T
∂S (T, V )

∂T
Ṫ + T

(
1

V

∂V (T, p)

∂T

)(
− 1

V

∂V (T, p)

∂p

)−1
V̇ (5.8)

Capacité thermique isochore :

CV = T
∂S (T, V )

∂T
(5.10)

Coefficient de dilatation isobare :

αp =
1

V

∂V (T, p)

∂T
(5.11)

Coefficient de compressibilité isotherme :

χT = − 1

V

∂V (T, p)

∂p
(5.12)

Courant de chaleur : (5.10), (5.11) et (5.12) dans (5.8)

(5.9)
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5.2.2 Coefficients calorimétriques dépendant de T et V

Différentielles : dS = Ṡ dt, dV = V̇ dt

Chaleur infinitésimale : (5.9) dans δQ = IQ dt (1.16)

(5.15)

Capacité thermique isochore :

CV = T
∂S (T, V )

∂T
(5.10)

Dérivée partielle de l’énergie interne : définition mathématique (4.93)

(5.13)

Capacité thermique isochore : (5.13) dans (5.10)

(5.14)
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5.2.3 Coefficients calorimétriques dépendant de T et p

Premier principe : variables d’état (T, p)

(5.16)

Déformation : (2.59)

PW = − p V̇ (T, p) (5.17)

Courant de chaleur : (5.17) dans (5.16)

(5.18)

Relation de Maxwell : théorème de Schwarz appliqué à G (T, p)

∂V (T, p)

∂T
= − ∂S (T, p)

∂p
(4.91)

Courant de chaleur : (4.91) dans (5.18)

(5.19)
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5.2.3 Coefficients calorimétriques dépendant de T et p

Courant de chaleur : (5.19) remis en forme

IQ = T
∂S (T, p)

∂T
Ṫ − T V (T, p)

(
1

V

∂V (T, p)

∂T

)
ṗ (5.20)

Capacité thermique isobare : à p = cste [J ·K−1]

(5.22)

La grandeur Cp ∆T où ∆T = 1 K est la chaleur Q fournie pour
augmenter la température T de 1 K à pression p constante.

Coefficient de dilatation isobare :

αp =
1

V

∂V (T, p)

∂T
(5.11)

Courant de chaleur : (5.22) et (5.11) dans (5.20)

(5.21)
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5.2.3 Coefficients calorimétriques dépendant de T et p

Différentielles : dS = Ṡ dt, dp = ṗ dt

Chaleur infinitésimale : (5.21) dans δQ = IQ dt (1.16)

(5.25)

Capacité thermique isobare :

Cp = T
∂S (T, p)

∂T
(5.22)

Dérivée partielle de l’enthalpie : définition mathématique (4.93)

(5.23)

Capacité thermique isobare : (5.23) dans (5.22)

(5.24)
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5.2.4 Capacités thermiques molaires et massiques

Capacités thermiques : CV et Cp sont des grandeurs extensives dont la
dimension physique est celle d’une entropie.

Densités molaires : on peut définir des densités molaires de capacités
thermiques pour une substance constituée de N moles.

Capacités thermiques molaires :

1 Capacité thermique isochore molaire : [J ·K−1 ·mol−1]

(5.26)

La grandeur cV ∆T où ∆T = 1 K est la chaleur Q à fournir à 1 mole de
substance pour augmenter sa température T de 1 K à volume V
constant.

2 Capacité thermique isobare molaire : [J ·K−1 ·mol−1]

(5.27)

La grandeur cp ∆T où ∆T = 1 K est la chaleur Q à fournir à 1 mole de
substance pour augmenter sa température T de 1 K à pression p
constante.
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5.2.4 Capacités thermiques molaires et massiques

Capacités thermiques : CV et Cp sont des grandeurs extensives dont la
dimension physique est celle d’une entropie.

Densités massiques : on peut définir des densités massiques de
capacités thermiques pour une substance de masse M .

Capacités thermiques massiques :

1 Capacité thermique isochore massique : [J ·K−1 · kg−1]

(5.28)

La grandeur c∗V ∆T où ∆T = 1 K est la chaleur Q à fournir à 1 kg de
substance pour augmenter sa température T de 1 K à volume V
constant.

2 Capacité thermique isobare massique : [J ·K−1 · kg−1]

(5.29)

La grandeur c∗p ∆T où ∆T = 1 K est la chaleur Q à fournir à 1 kg de
substance pour augmenter sa température T de 1 K à pression p
constante.
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5.2.4 Expérience - Capacité thermique massique de l’eau

On chauffe de l’eau à l’aide d’un chauffe-eau. En première approximation,
on peut considérer que la capacité thermique massique est constante.
D’après le premier principe, la variation d’énergie interne durant le
processus s’écrit,

∆Ui→f = Qi→f = IQ ∆t = C ∆Ti→f = M c∗∆Ti→f

En connaissant le courant de chaleur IQ et la masse M d’eau, et en
mesurant le temps de chauffe ∆t et la différence de température ∆Ti→f ,
on détermine la capacité thermique massique de l’eau,

c∗ =
IQ ∆t

M ∆Ti→f
= 4185 J ·K−1 · kg−1
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5.3 Troisième principe de la thermodynamique
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5.3.1 Troisième principe de la thermodynamique

Lorsque la température d’un système homogène formé d’une seule
substance tend vers le zéro absolu, température qui ne saurait être
atteinte, son entropie tend vers zéro.

Troisième principe : variables d’état (T, V ) ou (T, p)

(5.30)

Entropie : processus à volume constant (5.15) avec dV = 0

(5.31)

Entropie : processus à pression constante (5.25) avec dp = 0

(5.32)
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5.3.1 Troisième principe de la thermodynamique

Troisième principe :

lim
T→0

S (T, V ) = 0 ou lim
T→0

S (T, p) = 0 (5.30)

Entropie : processus à volume constant

S (T, V ) =

∫ T

0

dS (T ′, V ) =

∫ T

0

δQ

T ′
=

∫ T

0

CV
dT ′

T ′
(5.31)

Entropie : processus à pression constante

S (T, p) =

∫ T

0

dS (T ′, p) =

∫ T

0

δQ

T ′
=

∫ T

0

Cp
dT ′

T ′
(5.32)

Capacités thermiques : voisinage du zéro absolu

(5.33)

où ak > 0 et bk > 0. La condition (5.30) requiert que a0 = b0 = 0.

Troisième principe : (5.33) dans (5.31) ou (5.32)

(5.33)
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5.4.1 Relations de Mayer et de Reech

Relations de Mayer et de Reech : relations entre la capacité thermique
isochore CV et la capacité thermique isobare Cp.

Volume infinitésimal : variables d’état (T, p)

(5.35)

Volume infinitésimal : (5.11) et (5.12) dans (5.35)

(5.36)

Chaleur infinitésimale : variables d’état (T, V )

δQ = CV dT +
αp

χT
T dV (5.15)

Chaleur infinitésimale : (5.36) dans (5.15)

(5.37)
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5.4.1 Relations de Mayer et de Reech

Chaleur infinitésimale : (5.37) remis en forme

δQ =

(
CV +

α2
p

χT
T V

)
dT − αp T V dp (5.38)

Chaleur infinitésimale : variables d’état (T, p)

δQ = Cp dT − αp T V (T, p) dp (5.25)

Relation de Mayer :

(5.39)

Coefficient gamma : indice adiabatique ou coefficient de Laplace

(5.40)

Coefficient gamma : (5.10) et (5.22) dans (5.40)

(5.41)
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5.4.1 Relations de Mayer et de Reech

Identité cyclique de dérivées partielles : S (T, p), T (p, S) et p (S, T )

(5.42)

Dérivée partielle :

(5.43)

Identité cyclique de dérivées partielles : S (T, V ), T (V, S) et V (S, T )

(5.44)

Dérivée partielle :

(5.45)

Coefficient gamma : (5.43) et (5.45) dans (5.41)

(5.46)
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5.4.1 Relations de Mayer et de Reech

Coefficient gamma : inversion (4.96) de deux dérivées partielles (5.46)

(5.47)

Dérivée d’une composition de fonction : V (S (p, T ) , T ) à T = cste

(5.48)

Dérivée d’une composition de fonction : V (S, T (p, S)) à S = cste

(5.49)

Coefficient gamma : (5.48) et (5.49) dans (5.47)

(5.50)

Coefficient gamma : (5.50) remis en forme

γ =

(
− 1

V

∂V (T, p)

∂p

)(
− 1

V

∂V (S, p)

∂p

)−1
(5.51)
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5.4.1 Relations de Mayer et de Reech

Coefficient gamma :

γ =

(
− 1

V

∂V (T, p)

∂p

)(
− 1

V

∂V (S, p)

∂p

)−1
(5.51)

Coefficient de compressibilité isotherme : à T = cste [Pa−1]

χT = − 1

V

∂V (T, p)

∂p
(5.12)

Coefficient de compressibilité isentropique : à S = cste [Pa−1]

(5.52)

Ce coefficient représente la diminution relative du volume V due à
l’augmentation de la pression p à entropie S constante.

Relation de Reech : (5.12) et (5.52) dans (5.51)

(5.53)
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5.4.1 Relations de Mayer et de Reech

Relation de Mayer :

Cp − CV =
α2
p

χT
T V (5.39)

Relation de Reech :

Cp

CV
=
χT

χS
(5.53)

Les relations de Mayer (5.39) et de Reech (5.53) imposent deux
contraintes sur les 5 coefficients calorimétriques CV , Cp, αp, χT et χS . Il
n’y a donc que 3 coefficients calorimétriques indépendants.

Solide et liquide : indilatable et incompressible

(5.54)

Capacité thermique : indilatable et incompressible : α2
p/χT ' 0

(5.55)
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5.5 Capacité thermique des solides
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Dr. Sylvain Bréchet 5 Calorimétrie 33 / 73



5.5.1 Capacité thermique des solides

Loi de Dulong et Petit : à température suffisamment élevée, la capacité
thermique C de nombreux solides est proportionnelle à la quantité de
matière et indépendante de la température,

(5.56)

où R est la constante des gaz parfaits. La capacité thermique
C = 3NR = 3N NA kB sera établie en thermodynamique statistique
(chapitre 9) où kB est la constante de Boltzmann et 3NA est le nombre
de degrés de liberté d’une mole de molécules considérées comme des
oscillateurs harmoniques couplés.

Premier principe : (5.15) dans (1.59) dilatation négligeable : dV = 0

(5.57)

Loi de Dulong et Petit : énergie interne (5.45)

(5.58)
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5.5.1 Expérience - Loi de Dulong et Petit

On plonge quatre échantillons d’une mole de métal (cuivre, aluminium,
plomb, étain) dans quatre récipients contenant la même quantité d’eau à
température ambiante. La température initiale des quatre échantillons est
identique et supérieure à la température initiale de l’eau.

D’après la loi de Dulong et Petit, la capacité thermique de chaque
échantillon est la même. Ainsi, lorsque les métaux et l’eau ont atteint
l’équilibre thermique, la température finale de chaque récipient est la
même, car la même chaleur a été fournie à chaque récipient.
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5.6 Gaz parfait
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5.6.1 Equation d’état

Loi phénoménologique : loi tirée des lois de Boyle-Mariotte, Charles,
Gay-Lussac et Avogadro

p V

NT
= cste (5.63)

Gaz parfait : équation d’état

(5.66)

1 Constante macroscopique : constante des gaz parfaits

R = NA kB = 6.022 · 1023 kB = 8.31 J ·K−1 ·mol−1 (5.64)

2 Constante microscopique : constante de Boltzmann

kB = 1.38 · 10−23 J ·K−1 (5.65)

Gaz parfait : modèle (thermodynamique statistique)

1 Forces d’interaction négligeables : les interactions entre les atomes ou
les molécules peuvent être modélisées par des collisions élastiques (a ' 0).

2 Volume propre négligeable : le volume occupé par les atomes ou les
molécules est négligeable par rapport au volume occupé par le gaz (b ' 0).
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5.6.2 Energie interne

Relation de Gibbs :

dU = T dS − p dV (4.1)

Différentielle de l’entropie : variables d’état (T, V )

(5.67)

Relation de Gibbs : (5.67) dans (4.1)

(5.68)

Capacité thermique isochore :

CV = T
∂S (T, V )

∂T
(5.10)

Relation de Maxwell : énergie libre F (T, V )

∂S (T, V )

∂V
=
∂p (T, V )

∂T
(4.87)
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5.6.2 Energie interne

Relation de Gibbs : (5.10) et (4.87) dans (5.68)

(5.69)

Pression : gaz parfait

p (T, V ) =
NRT

V
(5.66)

Dérivée partielle de la pression : gaz parfait

Différentielle de l’énergie interne : (5.66) dans (5.69)

(5.53)
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5.6.3 Enthalpie

Différentielle de l’enthalpie :

dH = T dS + V dp (4.32)

Différentielle de l’entropie : variables d’état (T, p)

(5.71)

Différentielle de l’enthalpie : (5.71) dans (4.32)

(5.72)

Capacité thermique isobare :

Cp = T
∂S (T, p)

∂T
(5.25)

Relation de Maxwell : énergie libre de Gibbs G (T, p)

∂S (T, p)

∂p
= − ∂V (T, p)

∂T
(4.91)
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5.6.3 Enthalpie

Différentielle de l’enthalpie : (5.25) et (4.91) dans (5.55)

(5.73)

Volume : gaz parfait

V (T, p) =
NRT

p
(5.66)

Dérivée du volume : par rapport à la température (5.47)

Différentielle de l’enthalpie : (5.66) dans (5.56)

(5.74)
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5.7 Coefficients calorimétriques du gaz parfait

5.7 Coefficients calorimétriques du gaz parfait
5.7.1 Capacité thermique isochore
5.7.2 Capacité thermique isobare
5.7.3 Coefficient gamma

Dr. Sylvain Bréchet 5 Calorimétrie 42 / 73



5.7.1 Capacité thermique isochore

Capacité thermique isochore : expérimentalement, la capacité
thermique isochore CV d’un gaz parfait est proportionnelle au nombre de
moles N et indépendante de la température T et du volume V .

(5.75)

où c > 0 est un paramètre sans dimension (chapitre 9).

1 Atomes simples : c =
3

2
2 Molécules diatomiques rigides : c =

5

2
3 Molécules diatomiques vibrantes : c =

7

2

Différentielle de l’énergie interne : (5.75) dans (5.70)

(5.76)

Energie interne : intégration de (5.76)

(5.78)
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5.7.2 Capacité thermique isobare

Volume : gaz parfait

V (T, p) =
NRT

p
(5.66)

Coefficient de dilatation isobare : (5.66) dans (5.11)

(5.79)

Coefficient de compressibilité isotherme : (5.66) dans (5.12)

(5.80)

Relation de Mayer : générale

Cp − CV =
α2
p

χT
T V (5.39)

Relation de Mayer : gaz parfait (5.79) et (5.80) dans (5.39)

(5.81)
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5.7.2 Capacité thermique isobare

Relation de Mayer : gaz parfait (5.66) et (5.881)

(5.82)

Capacité thermique isochore :

CV = cNR (5.75)

Capacité thermique isobare : (5.75) dans (5.82)

(5.83)

Différentielle de l’enthalpie : (5.83) dans (5.74)

(5.84)

Enthalpie : intégration de (5.84)

(5.86)
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5.7.3 Coefficient gamma

Relation de Reech : générale

γ =
Cp

CV
=
χT

χS
(5.53)

Capacités thermiques : (5.75) et (5.83)

CV = cNR et Cp = (c+ 1)NR > 0

Coefficient gamma : (5.75) et (5.83) dans (5.53)

(5.87)

Compressibilité isotherme : gaz parfait

χT =
1

p
> 0 (5.80)

Compressibilité isentropique : gaz parfait (5.53) et (5.80)

(5.88)
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5.8 Entropie du gaz parfait

5.8 Entropie du gaz parfait
5.8.1 Entropie comme fonction de T et V
5.8.2 Entropie comme fonction de T et p
5.8.3 Entropie comme fonction de V et p
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5.8.1 Entropie comme fonction de T et V

Différentielle de l’entropie : (5.15) divisé par T

(5.89)

Capacité thermique isochore : gaz parfait

CV = cNR (5.75)

Coefficients de dilatation isobare et de compressibilité isotherme :

αp =
1

T
et χT =

1

p
=

V

NRT

Différentielle de l’entropie : (5.75), (5.79) et (5.80) dans (5.89)

(5.90)

Variation d’entropie : état initial i → état final f (5.90)

(5.92)
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5.8.1 Entropie comme fonction de T et V

Variation d’entropie : état initial i → état final f (5.92)

(5.93)

Coefficient gamma :

γ = 1 +
1

c
ainsi

1

c
= γ − 1 (5.87)

Variation d’entropie : (5.87) dans (5.93) remise en forme donne (5.94)

Processus isentropique : à entropie constante : ∆Si→f = 0 dans (5.94)

(5.95)
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5.8.2 Entropie comme fonction de T et p

Différentielle de l’entropie : (5.17) divisé par T

(5.96)

Capacité thermique isobare : gaz parfait

Cp = (c+ 1)NR (5.83)

Coefficient de dilatation isobare : (5.66) dans (5.79)

αp =
1

T
=
NR

pV
(5.79)

Différentielle de l’entropie : (5.79) et (5.83) dans (5.96)

(5.97)

Variation d’entropie : état initial i → état final f (5.97)

(5.98)
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5.8.2 Entropie comme fonction de T et p

Variation d’entropie : état initial i → état final f (5.98)

(5.99)

Coefficient gamma :

γ =
c+ 1

c
= 1 +

1

c
ainsi − 1

c
= 1− γ (5.87)

Variation d’entropie : (5.87) dans (5.99) remise en forme donne (5.100)

Processus isentropique : à entropie cste : ∆Si→f = 0 dans (5.100)

(5.101)
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5.8.3 Entropie comme fonction de V et p

Différentielle de l’équation d’état : gaz parfait avec N = cste

(5.66)

Relation différentielle : (5.66) divisée par NRT

(5.103)

Différentielle de l’entropie : (5.90) ou (5.97)

dS = cNR
dT

T
+NR

dV

V
= (c+ 1)NR

dT

T
− NR

dp

p

Différentielle de l’entropie : (5.90) ou (5.97) et (5.103)

(5.104)

Variation d’entropie : état initial i → état final f (5.104)

(5.105)
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5.8.3 Entropie comme fonction de V et p

Variation d’entropie : état initial i → état final f (5.105)

(5.106)

Coefficient gamma :

γ =
c+ 1

c
(5.87)

Variation d’entropie : (5.87) dans (5.106) remise en forme : (5.107)

Processus isentropique : à entropie cste : ∆Si→f = 0 dans (5.107)

(5.108)

Processus isotherme : à température constante : équation d’état (5.66)

(5.121)
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5.9 Applications

5.9 Applications
5.9.1 Compression adiabatique irréversible
5.9.2 Compression adiabatique réversible
5.9.3 Compressions adiabatiques irréversible et réversible
5.9.4 Mesure du coefficient gamma
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5.9.1 Compression adiabatique irréversible

’

Système adiabatiquement fermé : cylindre vertical contenant N moles
d’un gaz parfait fermé par un piston de masse M et d’aire A.

Compression adiabatique irréversible : une masse M ′ est posée
soudainement sur le piston. Le gaz n’est plus à l’équilibre mécanique avec
le piston entre les états initial et final : p ext 6= p.
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5.9.1 Compression adiabatique irréversible

Source d’entropie : univers (système et environnement) (3.51)

ΣS =
1

T

(
p− p ext

)
V̇ > 0 (5.122)

Compression adiabatique irréversible :

Avant et après la compression : états d’équilibre initial et final

Durant la compression : état intermédiaire hors équilibre

Etat initial : équilibre mécanique

(5.123)

Equilibre mécanique initial :

(5.124)
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5.9.1 Compression adiabatique irréversible

Etat final : équilibre mécanique (5.125)

Equilibre mécanique final :

(5.126)

Premier principe : (1.65) compression adiabatique : Qi→f = 0

∆Ui→f = Wi→f (5.127)

Variation de l’énergie interne : (5.76)

(5.128)

Variation de l’énergie interne : (5.124) et (5.126) dans (5.128)

(5.129)
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5.9.1 Compression adiabatique irréversible

Force et pression extérieure : (2.47)

(5.130)

Déformation irréversible : généralisation de (2.50)

(5.131)

Travail : effectué sur le gaz parfait (5.131) dans (1.61)

(5.132)

Pression extérieure finale : durant la compression

p ext
f =

(M +M ′) g

A
(5.125)

Travail : effectué sur le gaz parfait (5.125) dans (5.132)

(5.133)

Dr. Sylvain Bréchet 5 Calorimétrie 58 / 73



5.9.1 Compression adiabatique irréversible

Premier principe : (5.129) et (5.133) dans ∆Ui→f = Wi→f

(5.134)

Premier principe : (5.134) remis en forme

(5.135)

Volumes et hauteurs : initiale et finale

Rapport des volumes et hauteurs : (5.135)

(5.136)

Rapport des pressions : (5.123) et (5.125)

(5.137)
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5.9.1 Compression adiabatique irréversible

Rapport des volumes :

Vf
Vi

=
1 + 1

c+1
M ′

M

1 + M ′

M

(5.136)

Rapport des pressions :

pf
pi

=
M +M ′

M
= 1 +

M ′

M
(5.137)

Rapport des équations d’état : gaz parfait

(5.138)

Rapport des températures : (5.136) et (5.137) dans (5.138)

(5.139)
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5.9.1 Compression adiabatique irréversible

Variation d’entropie : (5.106)

∆Si→f = (c+ 1) NR ln

(
Vf
Vi

)
+ cNR ln

(
pf
pi

)
(5.140)

Variation d’entropie : (5.136) et (5.137) dans (5.140)

(5.141)

Variation d’entropie : (5.141) remis en forme

(5.141)

Justification : développement limité en M ′/M (5.142)
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5.9.2 Compression adiabatique réversible

’

Système adiabatiquement fermé : cylindre vertical contenant N moles
d’un gaz parfait fermé par un piston de masse M et d’aire A.

Compression adiabatique réversible : une masse M ′ est posée
progressivement sur le piston. Le gaz est en tout temps à l’équilibre
mécanique avec le piston : p ext = p.
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5.9.2 Compression adiabatique réversible

Source d’entropie : processus réversible

(5.143)

Compression adiabatique réversible : équilibre mécanique

Bilan d’entropie : (2.56) avec IQ = 0

(5.144)

Compression isentropique :

(5.145)

Rapport des pressions :

pf
pi

=
p ext
f

p ext
i

= 1 +
M ′

M
> 1 (5.137)
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5.9.2 Compression adiabatique réversible

Rapport des volumes et hauteurs : (5.146)

Compression isentropique : (5.95)

(5.149)

Rapport des températures : (5.146) dans (5.149)

(5.150)

Variation d’entropie : état initial i → état final f

∆Si→f = (c+ 1) NR ln

(
Vf
Vi

)
+ cNR ln

(
pf
pi

)
(5.106)

Variation d’entropie : (5.146) dans (5.106)

(5.151)
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5.9.3 Compressions adiabatiques irréversible et réversible

Rapport des températures : molécules diatomiques rigides : c = 5/2

Tf
Ti

= 1 +
2

7

M ′

M
(irréversible)

Tf
Ti

=

(
1 +

M ′

M

) 2
7

(réversible)

La température finale Tf du gaz diatomique lors de la compression
irréversible est plus grande que lors de la compression réversible dû à la
chaleur générée par frottement interne.

Dr. Sylvain Bréchet 5 Calorimétrie 65 / 73



5.9.3 Compressions adiabatiques irréversible et réversible

Rapport des volumes : molécules diatomiques rigides : c = 5/2

Vf
Vi

=
1 + 2

7
M ′

M

1 + M ′

M

(irréversible)
Vf
Vi

=

(
1 +

M ′

M

)− 5
7

(réversible)

Le volume final Vf du gaz diatomique lors de la compression irréversible
est plus grand que lors de la compression réversible dû au frottement
interne qui s’oppose à la compression.
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5.9.3 Compressions adiabatiques irréversible et réversible

Variation d’entropie : molécules diatomiques rigides : c = 5/2

∆Si→f = NR ln


(

1 + 2
7

M ′

M

) 7
2

1 + M ′

M

 (irrév.) ∆Si→f = 0 (rév.)

La variation d’entropie ∆Si→f est positive pour la compression
irréversible dû au frottement interne et nulle pour la compression
réversible.
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5.9.3 Expérience - Compressions réversible et irréversible

1 Compression réversible : (à gauche) en mettant progressivement des
petits cubes de métal sur un piston qui repose sur un gaz, on illustre le
fait que la pression exercée sur le piston par l’air et les petits cubes est en
tout temps égale à la pression du gaz. La compression est réversible, car
elle a lieu en tout temps à l’équilibre mécanique.

2 Compression irréversible : (à droite) en mettant soudainement un
grand cube de métal sur un piston qui repose sur un gaz, on génère un
déséquilibre mécanique entre la pression exercée sur le piston par l’air et
le grand cube qui est supérieure à la pression du gaz. La compression
ainsi illustrée est irréversible, car elle a lieu hors de l’équilibre mécanique.
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5.9.4 Mesure du coefficient gamma

Système : gaz homogène dans un grand
récipient sphérique de volume V (0) avec un
tube vertical fin de section A dans lequel
oscille sans frottement une bille de masse
M et de section A.

1 Adiabatiquement fermé : la mesure du
mouvement oscillatoire de la bille est si
rapide que l’on peut considérer que le
processus est adiabatique.

2 Evolution réversible : en absence de
frottement et de transfert de chaleur, le
mouvement oscillatoire n’est pas amorti.

3 Compression isentropique : comme le
système est adiabatiquement fermé et que
son évolution est réversible, le mouvement
oscillatoire a lieu à entropie constante.
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5.9.4 Mesure du coefficient gamma

Volume de gaz : équilibre et oscillation

(5.155)

Processus isentropique : (5.108)

(5.156)

Pression : (5.157)

Développement limité : en Az/V (0)� 1

(5.158)
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5.9.4 Mesure du coefficient gamma

Théorème centre de masse : bille

(5.159)

1 Poids :

(5.160)

2 Force élastique :

(5.161)

3 Accélération :

(5.162)

Mouvement oscillatoire : bille

(5.163)
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5.9.4 Mesure du coefficient gamma

Pression : gaz : approximation

p (z) = p (0)

(
1− γ

Az

V (0)

)
(5.158)

Mouvement oscillatoire : bille

−Mg +
(
p (z)− p ext

)
A = M z̈ (5.163)

Mouvement oscillatoire : (5.158) dans (5.163)

(5.164)

Mouvement oscillatoire : (5.164) remise en forme

(5.165)

Condition d’équilibre : z = 0 et z̈ = 0

(5.166)

Mouvement oscillatoire : (5.166) dans (5.165)

(5.167)
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5.9.4 Mesure du coefficient gamma

Mouvement oscillatoire :

(5.169)

Pulsation :

(5.170)

Fréquence d’oscillation :

(5.171)

Coefficient gamma : (5.171)

(5.172)

En mesurant la fréquence d’oscillation ν, le volume à l’équilibre V (0), la
pression à l’équilibre p (0), la section du tube A et la masse de la bille M ,
on détermine le coefficient γ du gaz.
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