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5.1 Lois phénoménologiques
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5.1.1 Lois phénoménologiques

@ Lois phénoménologiques : la température 1T', le volume V, la pression p
et le nombre de moles N de substance d'un gaz suffisamment dilué sont
liées par quatre lois phénoménologiques :

@ Loi de Boyle-Mariotte : a T = cste et N = cste
(isotherme) (5.59)
@ Loi de Charles : 3 p = cste et N = cste

(isobare) (5.60)

© Loi de Gay-Lussac : a V = cste et N = cste
(isochore) (5.61)

© Loi d’Avogadro : 3 p = cste et T = cste

(isotherme et isobare) (5.62)

@ Loi phénoménologique :

(5.63)J
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Expérience - Loi de Boyle-Mariotte

T = cste
N = cste

@ Un gaz dilué est enfermé dans un cylindre vertical par un piston. Un
transfert de chaleur assure I'équilibre thermique a température T°
constante entre le gaz et |I'environnement qui joue le role de réservoir de
chaleur.

@ Différentes masses sont posées sur le piston. On mesure la pression p et
le volume V' du gaz, et on vérifie qu'ils satisfont la loi de Boyle-Mariotte.

(isotherme) (5.59)
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5.1.1 Expérience - Loi de Charles

p = cste
N = cste

Y

P — 0 » T [K]

@ Un gaz dilué est enfermé dans un cylindre vertical en aluminium par un
piston mobile qui garantit une pression p constante.

@ On place le récipient métallique dans de |'eau chaude et de |'eau froide et
on mesure le volume V et |la température T et on vérifie qu'ils satisfont

la loi de Charles.

(isobare) (5.60)
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Expérience - Loi de Gay-Lussac

@ Un gaz dilué est enfermé dans un cylindre vertical en aluminium par un
piston fixe qui garantit un volume V' constant.

@ On place le récipient métallique dans de |'eau chaude et de |'eau froide et
on mesure la pression p et la température 1" et on vérifie qu’elles satisfont

la loi de Gay-Lussac.

(isochore) (5.61)
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Expérience - Loi d’Avogadro

V]
I\

N = 2mol 0 » N [mol]

@ Un gaz dilué est introduit dans un récipient fermé par un piston. La
pression p et la température 1" du gaz sont maintenues constantes a
I'équilibre thermique et mécanique avec I'environnement (réservoir).

@ On modifie le nombre de mole de gaz dans le récipient en introduisant du
gaz. On mesure le volume V et le nombre de moles IV de gaz, et on

vérifie qu'ils satisfont la loi d"Avogadro.

(isotherme et isobare) (5.62)
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5.2.1 Transfert réversible de chaleur

o Coefficients calorimétriques : ces coefficients phénoménologiques
caractérisent la réponse du systeme a un transfert réversible de chaleur.

@ Systeme simple :

Q Fermé: [0 =0

@ Diatherme : Ig # 0

© Déformable : Py # 0

@ Composition : N moles d'une seule substance chimique
e Variables d’état :

© Température et volume : (7,V)

© Température et pression : (T, p)

@ Potentiels thermodynamiques : |'entropie S peut €tre exprimée comme
fonction des variables d'état : S (T,V) ou S (T, p). Alors, I'énergie
interne et |'enthalpie deviennent des compositions de fonctions d'état :

@ Energie interne :

@ Enthalpie :
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5.2.2 Coefficients calorimétriques dépendant de T et V

o Premier principe : variables d'état (7, V)

(5.1)
o Déformation : (2.59)
Py =—p(T,V)V (5.2)
e Courant de chaleur : (5.2) dans (5.1)
(5.3)
o Relation de Maxwell : théoreme de Schwarz appliqué a F (T,V)
op(T,V) 0S(T,V)
— 4.87
oT oV (4-87)
e Courant de chaleur : (4.87) dans (5.3)
(5.4)
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5.2.2 Coefficients calorimétriques dépendant de T et V

@ Courant de chaleur :

IQ IT((?S(T’V) T—I—

oT

o ldentité cyclique : fonctions p (T, V), T (V,p) et V (T, p)

o Dérivée partielle : (5.5)

op(T,V) .
V)

o Dérivée partielle : (4.96) dans (5.6)

e Courant de chaleur : (5.7) dans (5.4)

Dr. Sylvain Bréchet

5 Calorimétrie

(5.8)




5.2.2 Coefficients calorimétriques dépendant de T et V

o Capacité thermique isochore : 3 V = cste [J-K™']

(5.10)J

La grandeur Cy AT ou AT = 1K est la chaleur () fournie pour
augmenter la température 1" de 1 K a volume V' constant.

o Coefficient de dilatation isobare : 3 p = cste [K™!]

(5.11)J

Ce coefficient représente |'augmentation relative du volume V' due a
I"augmentation de la température 1" a pression p constante.

@ Coefficient de compressibilité isotherme : 3 T = cste [Pa_l]

(5.12)J

Ce coefficient représente la diminution relative du volume V' due a
I"augmentation de la pression p a température 1’ constante.
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5.2.2 Coefficients calorimétriques dépendant de T et V

@ Courant de chaleur :

as((;;x/) P (1 8V(T,p)) (_é@Véi,p))lv (5.6)

vV or

Ip=T

e Capacité thermique isochore :

_ L OS(TV)

— 1
Cyv 5T (5 O)
@ Coefficient de dilatation isobare :
1 oV (T,p)
— 11
TV T (5-11)
@ Coefficient de compressibilité isotherme :
1 oV (T,p)
= — — 5.12

e Courant de chaleur : (5.10), (5.11) et (5.12) dans (5.8)

(5.9)
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5.2.2 Coefficients calorimétriques dépendant de T et V

o Différentielles : dS = Sdt, dV =V dt
o Chaleur infinitésimale : (5.9) dans 0Q) = I dt (1.16)

(5.15)J

o Capacité thermique isochore :

8S (T, V)
o7

o Dérivée partielle de I’énergie interne : définition mathématique (4.93)

Cy =T (5.10)

(5.13)

e Capacité thermique isochore : (5.13) dans (5.10)

(5.14)J
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5.2.3 Coefficients calorimétriques dépendant de T et p

e Premier principe : variables d'état (7, p)

(5.16)
o Déformation : (2.59)
Py =—pV (T,p) (5.17)
e Courant de chaleur : (5.17) dans (5.16)
(5.18)
o Relation de Maxwell : théoreme de Schwarz appliqué a G (T, p)
ov (T 05 (T
oT Op
o Courant de chaleur : (4.91) dans (5.18)
(5.19)
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5.2.3 Coefficients calorimétriques dépendant de T et p

e Courant de chaleur : (5.19) remis en forme

o =7 22ED) Gy py (1 av(T’”)p

oT vV oT

o Capacité thermique isobare : 3 p = cste [J-K™']

(5.20)

(5.22)J

La grandeur C), AT ou AT = 1K est la chaleur @) fournie pour
augmenter la température 1" de 1 K a pression p constante.

@ Coefficient de dilatation isobare :

1 9V (T,p)
vV or

@ Courant de chaleur : (5.22) et (5.11) dans (5.20)

oy =
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5.2.3 Coefficients calorimétriques dépendant de T et p

o Différentielles : dS = Sdt, dp = pdt

o Chaleur infinitésimale : (5.21) dans 0Q) = I dt (1.16)

(5.25))
e Capacité thermique isobare :
95 (T, p)
=T 22

o Dérivée partielle de I'’enthalpie : définition mathématique (4.93)

(5.23)

o Capacité thermique isobare : (5.23) dans (5.22)

(5.24)J
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5.2.4 Capacités thermiques molaires et massiques

e Capacités thermiques : Cy et C, sont des grandeurs extensives dont la
dimension physique est celle d'une entropie.

@ Densités molaires : on peut définir des densités molaires de capacités
thermiques pour une substance constituée de N moles.

e Capacités thermiques molaires :

@ Capacité thermique isochore molaire : [J-K~'-mol ']

(5.26)

La grandeur ¢y AT ou AT = 1K est la chaleur ) a fournir 3 1 mole de
substance pour augmenter sa température 7' de 1 K a volume V
constant.

@ Capacité thermique isobare molaire : [J-K™'-mol ']

(5.27)

La grandeur c, AT ou AT = 1K est la chaleur @ a fournir a 1 mole de
substance pour augmenter sa température 7' de 1 K a pression p
constante.
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5.2.4 Capacités thermiques molaires et massiques

e Capacités thermiques : Cy et C, sont des grandeurs extensives dont la
dimension physique est celle d'une entropie.

@ Densités massiques : on peut définir des densités massiques de
capacités thermiques pour une substance de masse M.

e Capacités thermiques massiques :

@ Capacité thermique isochore massique : [J- K™ ' - kg ']
(5.28)

La grandeur ¢y AT ou AT = 1K est la chaleur Q a fournir a 1 kg de
substance pour augmenter sa température 7' de 1 K a volume V
constant.

© Capacité thermique isobare massique : [J - K1 -kg_l]

(5.29)

La grandeur c;; AT ou AT = 1K est la chaleur Q a fournir a 1 kg de
substance pour augmenter sa température 1" de 1 K a pression p
constante.
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5.2.4 Expérience - Capacité thermique massique de I'eau

@ On chauffe de I'eau a I'aide d'un chauffe-eau. En premiére approximation,
on peut considérer que la capacité thermique massique est constante.
D'apres le premier principe, la variation d’'énergie interne durant le
processus s écrit,

@ En connaissant le courant de chaleur Ig et la masse M d’eau, et en
mesurant le temps de chauffe At et la différence de température AT;_, ¢,
on détermine la capacité thermique massique de |'eau,

Ig At

* — — 4185 J - K ! . kg !
¢ T MAT; 5
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5.3 Troisieme principe de la thermodynamique

5.3 Troisieme principe de la thermodynamique
5.3.1 Troisieme principe de la thermodynamique

Dr. Sylvain Bréchet 5 Calorimétrie 23 /73




5.3.1 Troisieme principe de la thermodynamique

Lorsque la température d'un systeme homogene formé d’'une seule
substance tend vers le zéro absolu, température qui ne saurait €tre
atteinte, son entropie tend vers zéro.

e Troisieme principe : variables d'état (7, V') ou (T, p)

e Entropie : processus a volume constant (5.15) avec dV =0

o Entropie : processus a pression constante (5.25) avec dp =0

(5.32)
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5.3.1 Troisieme principe de la thermodynamique

Troisieme principe :

lim S (T,V) =0 ou lim S (T,p) =0

T—0 T—0
Entropie : processus a volume constant

T T T /

5 JT

S(T,V):/ dS(T’,V):/ ?6,2: v
0 0

0

Entropie : processus a pression constante
T T T /
0@ dT’
s = [ as@n-[ F-[ o
0 o T 0 T

Capacités thermiques : voisinage du zéro absolu

ou ar > 0 et by > 0. La condition (5.30) requiert que ag = by = 0.

e Troisieme principe : (5.33) dans (5.31) ou (5.32)

(5.30)

(5.31)
(5.32)

(5.33)

(5.33)J
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5.4 Relations de Mayer et de Reech

5.4 Relations de Mayer et de Reech
5.4.1 Relations de Mayer et de Reech
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5.4.1 Relations de Mayer et de Reech

@ Relations de Mayer et de Reech : relations entre la capacité thermique
isochore C'y, et la capacité thermique isobare C,.

@ Volume infinitésimal : variables d'état (7', p)

(5.35)
@ Volume infinitésimal : (5.11) et (5.12) dans (5.35)

(5.36)
@ Chaleur infinitésimale : variables d'état (7, V)

5Q = Cy dT + 22 Tav (5.15)
XT

e Chaleur infinitésimale : (5.36) dans (5.15)

(5.37)
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5.4.1 Relations de Mayer et de Reech

@ Chaleur infinitésimale : (5.37) remis en forme

o2
0Q) = (C’V + TV) dT' — a, TV dp (5.38)
XT
o Chaleur infinitésimale : variables d'état (7', p)
0Q =CpdT — o, TV (T,p)dp (5.25)

@ Relation de Mayer :

(5.39)J

@ Coefficient gamma : indice adiabatique ou coefficient de Laplace

(5.40)J

o Coefficient gamma : (5.10) et (5.22) dans (5.40)

(5.41)
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5.4.1 Relations de Mayer et de Reech

o Identité cyclique de dérivées partielles : S (T,p), T (p,S) et p(S,T)
(5.42)
@ Dérivée partielle :
(5.43)

o Ildentité cyclique de dérivées partielles : S (T,V), T (V,S) et V (S,T)

(5.44)
@ Dérivée partielle :

(5.45)
o Coefficient gamma : (5.43) et (5.45) dans (5.41)

(5.46)
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5.4.1 Relations de Mayer et de Reech

Coefficient gamma : inversion (4.96) de deux dérivées partielles (5.46)
(5.47)

Dérivée d’une composition de fonction : V (S (p,T),T) a T = cste
(5.48)

Dérivée d’une composition de fonction : V (S,T (p,S)) a S = cste

(5.49)
Coefficient gamma : (5.48) et (5.49) dans (5.47)

(5.50)
Coefficient gamma : (5.50) remis en forme
T <_ % avgg,p)) <_ % avg,p))—l (5.51)
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5.4.1 Relations de Mayer et de Reech

e Coefficient gamma :

() e

@ Coefficient de compressibilité isotherme : 3 T = cste [Pa_l]

1oV (T,p)
V op

XT = (5.12)

o Coefficient de compressibilité isentropique : 3 S = cste [Pa™']

(5.52)j

Ce coefficient représente la diminution relative du volume V due a
I'augmentation de la pression p a entropie S constante.

o Relation de Reech : (5.12) et (5.52) dans (5.51)

(5.53)j

Dr. Sylvain Bréchet 5 Calorimétrie




5.4.1 Relations de Mayer et de Reech

@ Relation de Mayer :

042
C,— Cy=-LTV (5.39)

XT
@ Relation de Reech :

Cp XT
— = = 5.53
Cv  xs (5.53)

@ Les relations de Mayer (5.39) et de Reech (5.53) imposent deux
contraintes sur les 5 coefficients calorimétriques C'y, C), oy, X7 et xs. |l

n'y a donc que 3 coefficients calorimétriques indépendants.
@ Solide et liquide : indilatable et incompressible

(5.54)

@ Capacité thermique : indilatable et incompressible : 04129/XT ~ ()

(5.55) |
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5.5 Capacité thermique des solides

5.5 Capacité thermique des solides
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5.5.1 Capacité thermique des solides

@ Loi de Dulong et Petit : 3 température suffisamment élevée, la capacité
thermique C' de nombreux solides est proportionnelle a la quantité de
matiére et indépendante de la température,

(5.56))

ou R est la constante des gaz parfaits. La capacité thermique

C =3NR =3N N4 kp sera établie en thermodynamique statistique
(chapitre 9) ou kp est la constante de Boltzmann et 34 est le nombre
de degrés de liberté d'une mole de molécules considérées comme des
oscillateurs harmoniques couplés.

@ Premier principe : (5.15) dans (1.59) dilatation négligeable : dV =0

(5.57))

o Loi de Dulong et Petit : énergie interne (5.45)

(5.58)J
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5.5.1 Expérience - Loi de Dulong et Petit

@ On plonge quatre échantillons d'une mole de métal (cuivre, aluminium,
plomb, étain) dans quatre récipients contenant la méme quantité d'eau a
température ambiante. La température initiale des quatre échantillons est
identique et supérieure a la température initiale de l'eau.

@ D’apres la loi de Dulong et Petit, la capacité thermique de chaque
échantillon est la méme. Ainsi, lorsque les métaux et |'eau ont atteint
I"équilibre thermique, la température finale de chaque récipient est la
méme, car la méme chaleur a été fournie a chaque récipient.
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5.6 Gaz parfait
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5.6.1 Equation d’état

@ Loi phénoménologique : loi tirée des lois de Boyle-Mariotte, Charles,
Gay-Lussac et Avogadro

pV

NT = cste (5.63)

@ Gaz parfait : équation d'état

(5.66))

@ Constante macroscopique : constante des gaz parfaits
R=Naikp =6.022-10"kp =831 J-K " -mol™' (5.64)
@ Constante microscopique : constante de Boltzmann
kp =138-107* J. K (5.65)
e Gaz parfait : modéle (thermodynamique statistique)

@ Forces d’interaction négligeables : les interactions entre les atomes ou
les molécules peuvent étre modélisées par des collisions élastiques (a ~ 0).

@ Volume propre négligeable : le volume occupé par les atomes ou les
molécules est négligeable par rapport au volume occupé par le gaz (b ~ 0).
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5.6.2 Energie interne

@ Relation de Gibbs :

dU =T dS — pdV

o Différentielle de I'entropie : variables d'état (7,V)

o Relation de Gibbs : (5.67) dans (4.1)

e Capacité thermique isochore :

oS (T,V)

Cy =T

o Relation de Maxwell : énergie libre F' (T, V)
oS (T,V) 0op(1,V)

oT

oV
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5.6.2 Energie interne

e Relation de Gibbs : (5.10) et (4.87) dans (5.68)

(5.69)
@ Pression : gaz parfait
NRT
p(T,V) =~ — (5.66)

@ Dérivée partielle de la pression : gaz parfait

o Différentielle de I'énergie interne : (5.66) dans (5.69)

(5.53))
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5.6.3 Enthalpie

o Différentielle de I'enthalpie :

dH =TdS+ Vdp

o Différentielle de I'entropie : variables d'état (7', p)

o Différentielle de I'enthalpie : (5.71) dans (4.32)

e Capacité thermique isobare :

0S5 (T, p)

C,=T

o Relation de Maxwell : énergie libre de Gibbs G (T, p)

0S5 (T, p)

Op
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5.6.3 Enthalpie

o Différentielle de I’enthalpie : (5.25) et (4.91) dans (5.55)

(5.73)

@ Volume : gaz parfait

NRT
V(T,p)=—— (5.66)
p

@ Dérivée du volume : par rapport a la température (5.47)

o Différentielle de I’enthalpie : (5.66) dans (5.56)
(5.74))
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Coefficients calorimétriques du gaz parfait
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5.7.1 Capacité thermique isochore

@ Capacité thermique isochore : expérimentalement, la capacité
thermique isochore Cy, d'un gaz parfait est proportionnelle au nombre de
moles N et indépendante de la température 1" et du volume V.

(5.75))

ol ¢ > 0 est un paramétre sans dimension (chapitre 9).

. 3
© Atomes simples : ¢ = 5
L] [ ] 5
@ Molécules diatomiques rigides : ¢ = 5
L a [ ] 7
© Molécules diatomiques vibrantes : ¢ = 5

o Différentielle de I'énergie interne : (5.75) dans (5.70)

(5.76))

o Energie interne : intégration de (5.76)

(5.78)}
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5.7.2 Capacité thermique isobare

@ Volume : gaz parfait

V(T,p) = # (5.66)

o Coefficient de dilatation isobare : (5.66) dans (5.11)

(5.79)J

o Coefficient de compressibilité isotherme : (5.66) dans (5.12)

(5.80)J
@ Relation de Mayer : générale
o2
C,— Cy=-L2TV (5.39)
XT
o Relation de Mayer : gaz parfait (5.79) et (5.80) dans (5.39)
(5.81)
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5.7.2 Capacité thermique isobare

o Relation de Mayer : gaz parfait (5.66) et (5.881)

(5.82) |

@ Capacité thermique isochore :
Cy =cNR (5.75)

e Capacité thermique isobare : (5.75) dans (5.82)

(5.83) )
o Différentielle de I'enthalpie : (5.83) dans (5.74)

(5.84) J
o Enthalpie : intégration de (5.84)

(5.86)J
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5.7.3 Coefficient gamma

@ Relation de Reech : générale

Cp _ Xr

— P 5.53
TS o T xs (5.53)
o Capacités thermiques : (5.75) et (5.83)
Cy=cNR e C,=(c+1)NR>0
o Coefficient gamma : (5.75) et (5.83) dans (5.53)
(5.87)J
@ Compressibilité isotherme : gaz parfait
1
xT=—>0 (580)
p
o Compressibilité isentropique : gaz parfait (5.53) et (5.80)
(5.88)J
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5.8 Entropie du gaz parfait

5.8 Entropie du gaz parfait
5.8.1 Entropie comme fonction de T et V
5.8.2 Entropie comme fonction de T et p
5.8.3 Entropie comme fonction de V et p
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5.8.1 Entropie comme fonction de T et V

o Différentielle de I'entropie : (5.15) divisé par T

(5.89)
e Capacité thermique isochore : gaz parfait
Cy =cNR (5.75)
@ Coefficients de dilatation isobare et de compressibilité isotherme :
1 1 %
=7 % M T T NRT

o Différentielle de I'entropie : (5.75), (5.79) et (5.80) dans (5.89)

(5.90)J

e Variation d’entropie : état initial 7 — état final f (5.90)

(5.92)

Dr. Sylvain Bréchet 5 Calorimétrie



5.8.1 Entropie comme fonction de T et V

e Variation d’entropie : état initial ¢ — état final f (5.92)

(5.93)J

@ Coefficient gamma :

1 1
vy=14 - ainsi —=~4-1 (5.87)
c c

e Variation d’entropie : (5.87) dans (5.93) remise en forme donne (5.94)

o Processus isentropique : a entropie constante : AS;_, s = 0 dans (5.94)

(5.95))

Dr. Sylvain Bréchet 5 Calorimétrie 49 / 73




5.8.2 Entropie comme fonction de T et p

o Différentielle de I'entropie : (5.17) divisé par T

(5.96)
e Capacité thermique isobare : gaz parfait
Cp,=(c+1)NR (5.83)
e Coefficient de dilatation isobare : (5.66) dans (5.79)
1 NR
S 5.79
o Différentielle de I’entropie : (5.79) et (5.83) dans (5.96)
(5.97)J
e Variation d’entropie : état initial 7 — état final f (5.97)
(5.98)
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5.8.2 Entropie comme fonction de T et p

e Variation d’entropie : état initial 7 — état final f (5.98)

@9%J

@ Coefficient gamma :

| 1 |
CTL 142 ainsi ———1—~ (5.87)
C C C

fy:

e Variation d’entropie : (5.87) dans (5.99) remise en forme donne (5.100)

e Processus isentropique : a entropie cste : AS;_, = 0 dans (5.100)

(5.101) |
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5.8.3 Entropie comme fonction de V et p

e Différentielle de I'équation d’état : gaz parfait avec N = cste

(5.66)

o Relation différentielle : (5.66) divisée par NRT

(5.103)
o Différentielle de I’entropie : (5.90) ou (5.97)

dS:cNRd?T +NR% = (c+ 1)NRd?T — NR%p

o Différentielle de I'entropie : (5.90) ou (5.97) et (5.103)

(5.104)J
e Variation d’entropie : état initial ¢ — état final f (5.104)

(5.105)
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5.8.3 Entropie comme fonction de V et p

e Variation d’entropie : état initial ¢ — état final f (5.105)

(5.106)J

@ Coefficient gamma :

c+1
C

e Variation d’entropie : (5.87) dans (5.106) remise en forme : (5.107)

(5.87)

’y:

e Processus isentropique : a entropie cste : AS;_, s = 0 dans (5.107)

(5.108))

@ Processus isotherme : a température constante : équation d'état (5.66)

(5.121) |
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5.9 Applications

5.9 Applications
5.9.1 Compression adiabatique irréversible
5.9.2 Compression adiabatique réversible
5.9.3 Compressions adiabatiques irréversible et réversible
5.9.4 Mesure du coefficient gamma
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5.9.1 Compression adiabatique irréversible

@ Systeme adiabatiquement fermé : cylindre vertical contenant N moles
d'un gaz parfait fermé par un piston de masse M et d'aire A.

e Compression adiabatique irréversible : une masse M’ est posée
soudainement sur le piston. Le gaz n'est plus a I'équilibre mécanique avec
le piston entre les états initial et final : p*' # p.
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5.9.1 Compression adiabatique irréversible

e Source d’entropie : univers (systeme et environnement) (3.51)

Y = % (p—p™)V =0 (5.122)

@ Compression adiabatique irréversible :

e Avant et apres la compression : états d'équilibre initial et final

e Durant la compression : état intermédiaire hors équilibre

e Etat initial : équilibre mécanique
(5.123)
@ Equilibre mécanique initial :

(5.124)
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5.9.1 Compression adiabatique irréversible

o Etat final : équilibre mécanique (5.125)

@ Equilibre mécanique final :

(5.126)
e Premier principe : (1.65) compression adiabatique : Q;— s =0
AU ¢ = Wiy (5.127)
e Variation de I’énergie interne : (5.76)
(5.128)

e Variation de I'énergie interne : (5.124) et (5.126) dans (5.128)

(5.129)
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5.9.1 Compression adiabatique irréversible

o Force et pression extérieure : (2.47)

o Déformation irréversible : généralisation de (2.50)

o Travail : effectué sur le gaz parfait (5.131) dans (1.61)

@ Pression extérieure finale : durant la compression

ext

Py =

o Travail : effectué sur le gaz parfait (5.125) dans (5.132)
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5.9.1 Compression adiabatique irréversible

e Premier principe : (5.129) et (5.133) dans AU,y = W,_;
(5.134)

e Premier principe : (5.134) remis en forme

(5.135)

@ Volumes et hauteurs : initiale et finale

e Rapport des volumes et hauteurs : (5.135)

(5.136)J

e Rapport des pressions : (5.123) et (5.125)

(5.137)J
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5.9.1 Compression adiabatique irréversible

@ Rapport des volumes :

1 M’
Vi _teaow

5.136)
. M (
Vi 1+ 57
@ Rapport des pressions :
pr M+ M M’
— = =14 — 5.137
o, A + o7 (5.137)
@ Rapport des équations d’état : gaz parfait
(5.138)
e Rapport des températures : (5.136) et (5.137) dans (5.138)
(5.139)J
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5.9.1 Compression adiabatique irréversible

e Variation d’entropie : (5.106)

ASip=(c+ )NRIn(“?) +cNRln( f)
1 Di

e Variation d’entropie : (5.136) et (5.137) dans (5.140)

e Variation d’entropie : (5.141) remis en forme

(5.140)

(5.141)

(5.141)

o Justification : développement limité en M'/M (5.142)
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5.9.2 Compression adiabatique réversible

@ Systeme adiabatiquement fermé : cylindre vertical contenant N moles
d'un gaz parfait fermé par un piston de masse M et d'aire A.

e Compression adiabatique réversible : une masse M’ est posée

progressivement sur le piston. Le gaz est en tout temps a |'équilibre
mécanique avec le piston : p&t = p.
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5.9.2 Compression adiabatique réversible

@ Source d’entropie : processus réversible

@ Compression adiabatique réversible : équilibre mécanique

e Bilan d’entropie : (2.56) avec Ig =0

@ Compression isentropique :

@ Rapport des pressions :

]ﬁ _ D ?Xt
D; piext

(5.143)

(5.144)

(5.145)

(5.137)J
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5.9.2 Compression adiabatique réversible

e Rapport des volumes et hauteurs : (5.146)

o Compression isentropique : (5.95)

e Rapport des températures :

(5.146) dans (5.149)

(5.149)

(5.150)J

@ Variation d’entropie : état initial © — état final f

Vy

1

V)+cNR1n<

e Variation d’entropie : (5.146) dans (5.106)

Pf
Di

)

(5.106)

(5.151)J
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5.9.3 Compressions adiabatiques irréversible et réversible

e Rapport des températures : molécules diatomiques rigides : ¢ = 5/2

T 2 M’ T M"™\ 7
?f =1+ =3 (irréversible) Tj: = (1 + M) (réversible)
Tf/TZ-
A

irréversible

réversible

1

> M' /M

0

@ La température finale Tr du gaz diatomique lors de la compression
irréversible est plus grande que lors de la compression réversible dii a la
chaleur générée par frottement interne.
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5.9.3 Compressions adiabatiques irréversible et réversible

e Rapport des volumes : molécules diatomiques rigides : ¢ = 5/2

v, 1+24 % VAN
VJ; = " +7]]\é\,4 (irréversible) —]: — (1 + ﬁ) (réversible)
Vi /Vi
A

irréversible

réversible

5 > M' /M
@ Le volume final V; du gaz diatomique lors de la compression irréversible
est plus grand que lors de la compression réversible dii au frottement

interne qui s'oppose a la compression.
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5.9.3 Compressions adiabatiques irréversible et réversible

e Variation d’entropie : molécules diatomiques rigides : ¢ = 5/2

7
2 M'\?2

M/
1+ 5

AS;r=NRIn (irrév.) ASir =0 (rév.)

AS;;

A
1

irréversible

réversible

> M' /M

0

@ La variation d’entropie AS;_, ¢ est positive pour la compression
irréversible dii au frottement interne et nulle pour la compression
réversible.
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5.9.3 Expérience - Compressions réversible et irréversible

© Compression réversible : (3 gauche) en mettant progressivement des
petits cubes de métal sur un piston qui repose sur un gaz, on illustre le
fait que la pression exercée sur le piston par |'air et les petits cubes est en
tout temps égale a la pression du gaz. La compression est réversible, car
elle a lieu en tout temps a |'équilibre mécanique.

@ Compression irréversible : (a droite) en mettant soudainement un
grand cube de métal sur un piston qui repose sur un gaz, on génére un
déséquilibre mécanique entre la pression exercée sur le piston par I'air et
le grand cube qui est supérieure a la pression du gaz. La compression
ainsi illustrée est irréversible, car elle a lieu hors de |'équilibre mécanique.
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5.9.4 Mesure du coefficient gamma

@ Systeme : gaz homogéne dans un grand .
récipient sphérique de volume V' (0) avec un 1 A
tube vertical fin de section A dans lequel o A
oscille sans frottement une bille de masse
M et de section A. AL---70

@ Adiabatiquement fermé : la mesure du
mouvement oscillatoire de la bille est si
rapide que I'on peut considérer que le
processus est adiabatique.

@ Evolution réversible : en absence de
frottement et de transfert de chaleur, le
mouvement oscillatoire n'est pas amorti.

© Compression isentropique : comme le
systeme est adiabatiquement fermé et que
son évolution est réversible, le mouvement
oscillatoire a lieu a entropie constante.

Dr. Sylvain Bréchet 5 Calorimétrie



5.9.4 Mesure du coefficient gamma

@ Volume de gaz : équilibre et oscillation

(5.155) pet 2
o Processus isentropique : (5.108) e
Afb-—to0
(5.156)
o Pression : (5.157) o
p(z

o Développement limité : en Az/V (0) < 1

(5.158)
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5.9.4 Mesure du coefficient gamma

@ Théoreme centre de masse : bille

T

(5.159) o]

Q@ Poids : ALlr---70
(5.160)

@ Force élastique : p(2)
(5.161)

© Accélération :
(5.162)

@ Mouvement oscillatoire : bille

(5.163)
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5.9.4 Mesure du coefficient gamma

@ Pression : gaz : approximation

p(z) =p(0) (1 -7 VA('(Z)))
@ Mouvement oscillatoire : bille
— Mg+ (p(z)— p™")A=M:2
@ Mouvement oscillatoire : (5.158) dans (5.163)

@ Mouvement oscillatoire : (5.164) remise en forme

@ Condition d’équilibre : 2 =0 et Z2=0

o Mouvement oscillatoire : (5.166) dans (5.165)
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5.9.4 Mesure du coefficient gamma

@ Mouvement oscillatoire : ext

T
(5.169) I
@ Pulsation : Abt-——to
(5.170)

@ Fréquence d’oscillation :

(5.171)

o Coefficient gamma : (5.171)

(5.172)J

En mesurant la fréquence d'oscillation v, le volume a I'équilibre V (0), la
pression a I'équilibre p (0), la section du tube A et la masse de la bille M,
on détermine le coefficient v du gaz.
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